
ClubHack 2011 preCON CTF walk-through

AMol NAik
http://twitter.com/amolnaik4

http://amolnaik4.blogspot.com

ClubHack нлммΣ LƴŘƛŀΩǎ IŀŎƪŜǊ ŎƻƴŦŜǊŜƴŎŜΣ ǿŀǎ ƘŜƭŘ ƻƴ о-4 Feb 2011 at Pune, India. They had a pre-

conference hacking competition, called as WEBWAR, whose winners can win a free entry to the

ClubHack event. The winners also qualified to play Treasure Hunt, a physical CTF at ClubHack

conference.

This post is a walk through for this preCON CTF challenge. After registration for the event, ClubHack

provided the link to CTF server. It has a website.

This was a site having download file and login module. At first, it seems we need to login using Login

page where there will be more to come. Also with download page, we can download other files which

might help us for other attacks or to login into application.

[ŜǘΩǎ ŀƴŀƭȅȊŜ ǘƘŜ ƭƻƎƛƴ ƳƻŘǳƭŜΦ

http://twitter.com/amolnaik4
http://amolnaik4.blogspot.com/

The login page uses MD5 of password string to authenticate.

This login seems to not vulnerable to SQL injection & Auth bypass. Only possible attack will be Brute

ŦƻǊŎŜ ǿƘƛŎƘ ŀƎŀƛƴ ŘƻŜǎƴΩǘ ǇǊƻǾŜ ŀƴȅǘƘƛƴƎ ƛƴ /¢CΦ {ƻ ǿŜ ƴŜŜŘ ǾŀƭƛŘ ŎǊŜŘŜƴǘƛŀƭǎ ǘƻ ƭƻƎ ƛƴΦ

The other page of interest was download.html.

The download link looks like this:

http://183.82.241.134/ClubHack/download.php?f=1.bin&oa=cf02eabd1afbca475abeb5760f16f0e2f4dfd

929

Download page requires 2 parameters: filename & some hash. The hash was identified as SHA1 based

on number on characters. After few tests, it was clear that to download any file we need to know

filename and SHA1 hash. Filename can be guessed but there was no clue on hash creation for particular

file.

Further inspection on download.html reveals execute.php in source as comment. This seems interesting.

When accessed, execute.php shows a form which takes 2 parameters: Command & Filename.

http://183.82.241.134/ClubHack/download.php?f=1.bin&oa=cf02eabd1afbca475abeb5760f16f0e2f4dfd929
http://183.82.241.134/ClubHack/download.php?f=1.bin&oa=cf02eabd1afbca475abeb5760f16f0e2f4dfd929

The first thought comes to my mind was Command Injection. When tried with άΤƛŦŎƻƴŦƛƎέΣ ƛǘ ǎƘƻǿǎ ƳŜ

ŀƴ ŜǊǊƻǊΥ άSorry Babu, Test page! Wonly one command is allowed. Try again!έ

After several attempts, it was clear that this page not vulnerable to any injection. It seems to work with

only one command as said in error message. Then I looked for all Linux commands which take filename

as parameter. Commands like cat, less, more, tail, etc,etc falls under such category.

None of these seems working. At the end, there were checksum commands left. The command

άǎƘŀмǎǳƳέ ǎŜŜƳǎ ǿƻǊƪƛƴƎ ǿƛǘƘ ǾŀƭƛŘ ŦƛƭŜƴŀƳŜΦ

Hmm!! Now things are pretty clear. Identify the file to download, generate SHA1 hash of it using

execute.php and then use download.php to download it.

[ŜǘΩǎ ŘƻǿƴƭƻŀŘ ¦ǎŜǊ[ƻƎƛƴΦǇƘǇ ŀǎ ƻǳǊ Ǝƻŀƭ ƛǎ ǘƻ ƎŜǘ ƭƻƎƎŜŘ ƛƴΦ CƻƭƭƻǿƛƴƎ ¦w[ǳǎŜŘ ǘƻ ŘƻǿƴƭƻŀŘ ƛǘΥ

http://183.82.241.134/ClubHack/download.php?f=UserLogin.php&oa=36ea1d4979568e6804b61b846e

d855fe5d6f626c

bƻǿ ƻƴƭȅ ǘƘƛƴƎ ƭŜŦǘ ǿŀǎ ǘƻ ŀƴŀƭȅȊŜ ¦ǎŜǊ[ƻƎƛƴΦǇƘǇΣ ŎƘŜŎƪ Ƙƻǿ ƛǘΩǎ ŀǳǘƘŜƴǘƛŎŀǘƛƴƎ ŀ ǳǎŜǊ ŀƴŘ ƎŜǘ ƭƻƎƎŜŘ

in. But this is CTF anŘ ƛǘ ǿƻƴΩǘ ōŜ ǘƘŀǘ ŜŀǎȅΦ

UserLogin.php was obfuscated. Quick Google search revealed that PHP obfuscator at

http://www.fopo.com.ar was used. Now we need to de-ƻōŦǳǎŎŀǘŜ ƛǘΦ DƻƻƎƭŜ ǎŜŀǊŎƘ ŘƛŘƴΩǘ reveal any

online/offline tool for this obfuscation. So only option was left to switch to Manual Mode.

This is how UserLogin.php file looked:

I used local PHP server to obfuscate it. First step was to change eval() to echo() which will give us back

the code to analyze further. The output looks like this:

http://183.82.241.134/ClubHack/download.php?f=UserLogin.php&oa=36ea1d4979568e6804b61b846ed855fe5d6f626c
http://183.82.241.134/ClubHack/download.php?f=UserLogin.php&oa=36ea1d4979568e6804b61b846ed855fe5d6f626c
http://www.fopo.com.ar/

It looks like arbitrary strings used to construct variable and function names. The only way to know it was

to echo back the arbitrary string values and replacing it with original strings in code. The input file looks

like this:

And output looks like this:

The final code after replacing the names looks like this:

bƻǿ ƛǘΩǎ ǎƻǊǘ ƻŦ ǊŜŀŘŀōƭŜΦ ¢Ƙƛǎ ŎƻŘŜ ŀƎŀƛƴ Ƙŀǎ ƻƴŜ eval() which is doing str_rot13(), base64_decode() &

gzinflate() actions on some input string.

[ŜǘΩǎ echo() it.

Now iǘΩǎ ƳǳŎƘ ŎƭŜŀǊΦ ¢ƘŜ tIt ŎƻŘŜ ƛǎ ǘŀƪƛƴƎ th{¢ ǇŀǊŀƳŜǘŜǊǎ ǿƘƛŎƘ ŀǊŜ ǳǎŜǊƴŀƳŜ ϧ ǇŀǎǎǿƻǊŘΦ ¢ƘŜƴ

checking it against the file content which has credentials stored. So the file

ά\ x6d\ 171\ x68\ 141\ x73\ 150\ x65\ 163\ x61\ 162\ x65\ 156\ x6f\ 164\ x68\ 145\ x72\ 145\ x2e\ 164\ x78\ 16

4έ seems to be having credentials. Echo this string to get exact filename.

bƻǿ ƭŜǘΩǎ ƎŜǘ ǘƘƛǎ ŦƛƭŜΦ

